

Transposition de modèles de géodonnées conceptuels

A l'exemple de modèles INTERLIS 2 retranscrits en SQL

Exemples de meilleures pratiques

Date de création: mai 2014

Mandant:

COSIG, Office fédéral de topographie swisstopo

Auteurs:

Inser SA & Eisenhut Informatik AG

Table des matières

Tabl	e des matières	3
1	Introduction	
2	Indications de portée générale	4
3	Points importants de la conversion de schéma	6
3.1	Conversion de structures orientées-objet	
3.2	Noms de classes, noms d'attributs	
3.3	OID, Primary Key	14
3.4	Types de données de base	16
3.5	CHBase	
4	Annexe	24
4.1	Types de données «Nombres» et «Texte»: INTERLIS/PostGreSQL/ESRI GDB	24

1 Introduction

Le présent recueil d'exemples de transposition est à considérer comme un répertoire de meilleures pratiques et vise à aider toutes celles et tous ceux qui doivent passer du modèle conceptuel orienté-objet en INTERLIS 2 à un modèle relationnel simplifié en SQL. Pourquoi avoir dressé cet inventaire? Pour deux raisons principales qui sont d'une part les expériences réalisées dans le cadre de projets de transposition menés par COSIG et l'OFEV et d'autre part le fait que swisstopo assume, conformément à la LGéo / à l'OGéo, la tâche de fixer les exigences qualitatives et techniques à satisfaire par les géodonnées de base relevant du droit fédéral, notamment en matière de modélisation.

La liste des cas de figure types n'est pas close et peut naturellement être étendue. On peut aussi imaginer d'autres options de transposition pour les cas de figure dévoilés. Il s'agissait surtout de répertorier quelques solutions courantes. Il va de soi que le présent document est ouvert à d'autres possibilités, si bien qu'il est «dynamique» en ce sens.

2 Indications de portée générale

Un modèle conceptuel sert à la documentation et à l'harmonisation de géodonnées. Il fournit des informations sur la structure et la sémantique d'un jeu de géodonnées indépendamment de tout système. Il convient donc de réfléchir à certains points de portée générale avant de transposer un tel modèle conceptuel dans des systèmes de banques de données logiques. On peut par exemple s'interroger sur la finalité de l'application logique et sur les exigences techniques à satisfaire. Il faut surtout se défaire d'emblée de l'idée qu'un modèle conceptuel orienté-objet peut être converti tel quel en un modèle logique.

Le présent document vise à mettre en lumière des points particulièrement délicats de la transposition à l'aide d'exemples. On veillera toutefois à ne pas se concentrer sur une seule technologie de banques de données; on tâchera plutôt de fournir des exemples et de donner des conseils relatifs aux points qu'il s'agit d'observer. Il y a généralement plusieurs possibilités pour convertir un modèle conceptuel en un modèle de banque de données concret. La question suivante revêt donc une grande importance: comment le modèle implémenté sera-t-il utilisé? Est-il par exemple opportun de recourir à une structure à plat ou vaut-il mieux créer une banque de données à la modélisation plus élaborée comportant de nombreuses tables et conditions? Quelles personnes ou quels processus (groupes d'utilisateurs) utiliseront par ailleurs la banque de données et avec quels logiciels? Il est également recommandé de faire appel à un spécialiste du domaine concerné issu du groupe des utilisateurs afin qu'il vérifie si la structure créée est effectivement utilisable par le public visé.

Les technologies mises en œuvre pour implémenter la banque de données jouent elles aussi un rôle prépondérant. Certains systèmes de banques de données permettent d'implémenter des conditions d'une telle sévérité qu'il est impossible de stocker des données non conformes dans la banque de données. Les points suivants constituent des indications de portée générale dont il convient de tenir compte lors de la conversion de schéma:

- INTERLIS 2 est orienté-objet. Un modèle INTERLIS 2 doit donc être «désemboîté» et converti en un modèle relationnel; une clé primaire et une clé étrangère doivent par ailleurs être générées pour que des relations puissent être reproduites.
- INTERLIS 2 permet d'importer d'autres modèles ou des parties de modèles. La complexité réelle d'un modèle INTERLIS 2 peut donc être bien supérieure à ce que la première lecture laisse entrevoir.

- Les modèles INTERLIS 2 sont structurés en thèmes (topics) et en classes. De nombreux systèmes de banques de données ne connaissent que les schémas et les tables.
- A l'inverse, INTERLIS n'accepte des objets multiples (Multipart) que via des structures telles que celles prédéfinies dans les modèles de données CH-Base. Le cas échéant, les banques de données doivent être modélisées de telle façon qu'elles n'acceptent que des objets uniques (Singlepart).
- INTERLIS 2 accepte plusieurs géométries par classe. Rares sont les systèmes de banques de données de SIG à prévoir de tels cas de figure, si bien qu'une classe avec deux géométries doit généralement être scindée en deux ou trois tables.
- INTERLIS 2 accepte les attributs de structure. Ce n'est pas le cas de la plupart des systèmes de banques de données et des SIG proposés sur le marché, de sorte qu'une classe avec des attributs de structure doit généralement être scindée en deux tables ou plus.
- INTERLIS 2 accepte les conditions au sein d'une même classe, par exemple le fait qu'un attribut doive être plus grand ou plus petit qu'un autre attribut de cette classe. Dans de nombreux systèmes de banques de données, de telles conditions ne sont modélisables qu'avec difficulté.
- INTERLIS 2 accepte les énumérations / les domaines codés, ce qui n'est pas le cas de tous les systèmes de banques de données. Les tables de référence constituent par exemple un moyen pour transposer des énumérations.

Il convient par ailleurs d'indiquer qu'une banque de données qui prend en charge des données conformes à un modèle n'a pas forcément besoin d'être bâtie conformément à ce modèle elle-même. Une structure à plat peut par exemple être légitime. C'est pourquoi il faut préciser ici que le respect de nombreuses conditions peut être assuré par des processus d'importation et d'exportation.

3 Points importants de la conversion de schéma

3.1 Conversion de structures orientées-objet

Remarque: la numérotation permet d'associer plusieurs possibilités de simplification (colonne 5) à un même cas de figure (exemple identique, colonnes 2 et 4).

PK = primary key (clé primaire)

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
1.a	Héritage	1:1	CLASS A (ABSTRACT) =	CREATE TABLE A (Une table est créée pour chaque classe.
			Attribut_1;	ID PK,	
			END A;	Attribut_1	
)	
			CLASS B EXTENDS A =	CREATE TABLE B (
			Attribut_2;	ID PK,	
			END B;	Attribut_2	
)	
1.b	Héritage	Sur-classe	CLASS A (ABSTRACT) =	CREATE TABLE A (Même exemple que pour le numéro 1.a.
			Attribut_1;	ID PK,	Cette fois-ci, une table est créée pour
			END A;	Attribut_1,	chaque classe racine.
				Attribut_2	Restriction: lorsque de nombreuses tables
			CLASS B EXTENDS A =)	renvoient à la classe racine.
			Attribut_2;		
			END B;		
1.c	Héritage	Sous-classe	CLASS A (ABSTRACT) =	CREATE TABLE B (Même exemple que pour le numéro 1.a. Une
			Attribut_1;	ID PK,	table est créée pour chaque classe concrète.
			END A;	Attribut_1,	
				Attribut_2	
			CLASS B EXTENDS A =)	
			Attribut_2;		
			END B;		
2.a	Structures	Clé étrangère pour une	STRUCTURE A =	CREATE TABLE A (La structure est modélisée sous forme de

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
	(CCC CASC)	structure	Attribut_1; Attribut_2;	ID PK, B_Attribut_3,	table contenant une clé étrangère pour établir le lien avec la table principale B.
			END A; CLASS B = Attribut_3: A; END B;	Attribut_1, Attribut_2, FOREIGN KEY B_Attribut_3_FK (B_Attribut_3) REFERENCES B (ID)) CREATE TABLE B (ID PK	Lorsque l'attribut de structure est de type LIST/BAG OF, il faut encore un champ d'index dans la table de la structure.
2.b	Structures	Clé étrangère pour un élé-	STRUCTURE A =) CREATE TABLE A (Même exemple que 2.a. lci, la clé étrangère
		ment de structure dans la table principale	Attribut_1; Attribut_2; END A; CLASS B = Attribut_3: A; END B;	ID PK, Attribut_1, Attribut_2) CREATE TABLE B (ID PK, Attribut_3, FOREIGN KEY Attribut_3_FK (Attribut_3) REFERENCES A(ID))	est contenue dans la table principale. Cette solution n'est pas envisageable lors- qu'un attribut de structure est défini comme LIST/BAG OF. La possibilité de définir un champ d'index fait défaut dans ce cas.
2.c	Structures	Eléments de structure comme JSON (ou XML) dans la table principale	STRUCTURE A = Attribut_1; Attribut_2; END A; CLASS B = Attribut_1: A; END B;	CREATE TABLE B (ID PK, Attribut_1 CLOB)	Le type de données dépend de la technologie, CLOB ou TEXT peuvent par exemple être utilisés.
2.d	Structures	Clé étrangère générique	STRUCTURE A = Attribut_1; Attribut_2; END A;	CREATE TABLE A (ID PK, Attribut_1, Attribut_2,	PARENTID est la clé étrangère générique dans la table de la classe avec l'attribut de structure. Toutefois, la même structure pouvant être utilisée dans différentes

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
			CLASS B =	PARENTID,	classes pour les attributs de structure, on ne
			Attribut_1: A;	PARENT_FQNAME VARCHAR(1000)	sait pas dans quelle table la clé étrangère
			END B;)	doit figurer. PARENT_FQNAME contient
				CREATE TABLE B (donc le nom qualifié de l'attribut de structure,
				ID PK	soit «ModelName.TopicName.ClassName.
)	AttrName».
3	Structures	Insérer les éléments de	STRUCTURE A =	CREATE TABLE B (On peut ainsi éviter la création d'un nombre
		structure dans la table prin-	Attribut_1 : (D1,D2) ;	ID PK,	trop élevé de tables. Restriction: lorsque les
		cipale	Attribut_2 : (D3,D4) ;	Attribut_3_1 (D1,D2),	domaines sont très étendus.
			END A	Attribut_3_2 (D3,D4),	Les énumérations peuvent alors être trans-
				Attribut_4_1 (D1,D2),	posées comme elles le sont aux exemples
			CLASS B =	Attribut_4_2 (D3,D4)	17 et 18.
			Attribut_3 : A;)	Cette solution n'est pas envisageable lors-
			Attribut_4 : A ;		qu'un attribut de structure est défini comme
			END B;		LIST/BAG OF.
4.a	Associations	Sans table intermédiaire:	CLASS A =	CREATE TABLE A (Le lien entre deux tables est établi avec une
		uniquement pour des rela-	Attribut_1;	ID PK,	clé étrangère.
		tions 1:1 et 1:n, sans con-	END A;	Attribut_1,	Cette solution devient malaisée lorsque
		traintes de BD (DB-	CLASS B =	rB,	l'association d'une extension contient des
		Constraints)	Attribut_2;)	attributs.
			END B;	CREATE TABLE B (
			ASSOCIATION C =	ID PK,	
			rA {1*} A;	Attribut_2	
			rB {1} B;)	
			END C;		
4.b	Associations	Sans table intermédiaire:	CLASS A =	CREATE TABLE A (Le lien entre deux tables est établi avec une
		uniquement pour des rela-	Attribut_1;	ID PK,	clé étrangère.
		tions 1:1 et 1:n, avec con-	END A;	Attribut_1,	Cette solution devient malaisée lorsque
		traintes de BD (DB-	CLASS B =	rB,	l'association d'une extension contient des
		Constraints)	Attribut_2;	FOREIGN KEY rB_FK (rB) REFERENCES	attributs.
			END B;	B(ID)	ESRI GDB: non transposable.
			ASSOCIATION C =		

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
			rA {1*} A; rB {1} B; END C;	CREATE TABLE B (ID PK, Attribut_2	
5.a	Associations	Avec table intermédiaire: pour des relations n:m, sans contraintes de BD (DB- Constraints)	CLASS A = Attribut_1; END A; CLASS B = Attribut_2; END B; ASSOCIATION C = rA {1*} A; rB {1*} B; END C;	CREATE TABLE A (ID PK, Attribut_1,) CREATE TABLE B (ID PK, Attribut_2) CREATE TABLE C (rA, rB	Le lien entre deux tables est établi avec une table intermédiaire.
5.b	Associations	Avec table intermédiaire: pour des relations n:m, avec contraintes de BD (DB- Constraints)	CLASS A = Attribut_1; END A; CLASS B = Attribut_2; END B; ASSOCIATION C = rA {1*} A; rB {1*} B; END C;	CREATE TABLE A (ID PK, Attribut_1,) CREATE TABLE B (ID PK, Attribut_2) CREATE TABLE C (rA, rB, FOREIGN KEY rA_FK (rA) REFERENCES A(ID), FOREIGN KEY rB_FK (rB) REFERENCES B(ID))	Le lien entre deux tables est établi avec une table intermédiaire. ESRI GDB: non transposable.

Numéro	Cas de figure	Description	Exemple	Simplification (exemple SQL)	Commentaires
	(Use case)				
6	Associations	Avec suppression en cas- cade	CLASS A = Attribut_1; END A; CLASS B = Attribut_2; END B; ASSOCIATION C = A {1*} A; B -<#> {1} B; END C;	CREATE TABLE A (ID PK, Attribut_1, Attribut_3, CONSTRAINT Attribut_3_FK FOREIGN KEY (Attribut3) REFERENCES B(ID) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE CASCADE,) CREATE TABLE B (ID PK, Attribut_2)	Banque de données (base SQL): les restrictions requises sont à définir comme des contraintes (constraints). Elles peuvent être lourdes lors de l'importation, l'ordre de succession des objets / enregistrements étant important. Il est ainsi impossible d'importer des «enfants» lorsque les «parents» n'existent pas. ESRI GDB: ESRI GDB: les possibilités sont différentes suivant la licence détenue. Deux types de classes de relations (RelationshipClasses) sont possibles: Simple: elles ne comportent aucune restriction, le lien est établi pour la visualisation dans ArcMap. Composite: restrictions en «cascade» lorsqu'un objet est supprimé.
7.a	Associations	Mettre à plat le modèle récursif dans la BD	CLASS A = Attribut_1; END A; ASSOCIATION C = rA1 {1*} A; rA2 {1} A; END C;	CREATE TABLE A (ID PK, k0_Attribut_1, k1_ID, k1_rA2, k1_Attribut_1, k2_ID, k2_rA2, k2_Attribut_1, k3_ID, k3_rA2,	En règle générale, une structure récursive est modélisée pour prendre en charge une structure d'objet infinie. Si l'on veut mettre à plat une telle structure dans une table, il faut se limiter à un nombre d'objets fini: une table possède un nombre de colonnes fixe. Dans l'exemple, 5 objets directs ou indirects de A peuvent être mémorisés au plus avec un objet racine. (Correspond à la transposition #10 appliquée à une association récursive). Les valeurs d'attributs existent de manière

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
				k3_Attribut_1, k4_ID, k4_rA2, k4_Attribut_1, k5_ID, k5_rA2, k5_Attribut_1	redondante. Lors de la saisie, l'utilisateur / l'application doit garantir que les données disponibles à plusieurs reprises présentent des contenus identiques pour des objets identiques.
7.b	Associations	Mettre à plat le modèle récursif dans la BD via JSON (ou XML) dans la table principale	CLASS A = Attribut_1; END A; ASSOCIATION C = rA1 {1*} A; rA2 {1} A; END C;	CREATE TABLE A (ID PK, k0_Attribut_1, kn_Objekte CLOB)	Au lieu de stocker des enregistrements séparés (un par objet avec les valeurs associées), le réseau atteignable depuis un objet racine peut être sérialisé dans un format adapté et stocké (valeur de colonne) avec l'objet racine. (Correspond à la transposition #2.c appliquée à un réseau d'objets récursif). Les requêtes avec des critères portant sur les objets du réseau deviennent alors compliquées. Les valeurs d'attributs existent de manière redondante. Lors de la saisie, l'utilisateur / l'application doit garantir que les données disponibles à plusieurs reprises présentent des contenus identiques pour des objets identiques.
8	Associations	Mettre à plat les classes ensemble, dans une table	CLASS A = Attribut_1; END A; CLASS B = Attribut_2; END B; ASSOCIATION C =	CREATE TABLE A (ID_CLASSA, ID_CLASSB, Attribut_1, Attribut_2	Avantage: les exploitations ne requièrent pas de jointure de BD (DB-Join). Inconvénients: Les valeurs d'attributs existent de manière redondante. Lors de la saisie, l'utilisateur / l'application doit garantir que les données disponibles à

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
			rA {1*} A; rB {1*} B; END C;		plusieurs reprises présentent des contenus identiques pour des objets identiques.
9	Conteneurs / baskets	Plusieurs conteneurs du même thème par banque de données	TOPIC A = CLASS AA = Attribut_1; END AA; END A;	CREATE TABLE A (ID PK, Attribut_1, BasketID FOREIGN KEY BasketID _FK (BasketID) REFERENCES Basket(ID),) CREATE TABLE Basket (ID PK)	Il est possible d'avoir plusieurs conteneurs par thème dans le fichier de transfert. Un champ supplémentaire est requis si l'on veut savoir quelles données appartiennent à quel conteneur INTERLIS.

3.2 Noms de classes, noms d'attributs

PK = primary key (clé primaire)

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
10	Noms	Renommer des tables ou des colonnes à cause de conflits avec les règles de BD ou de prescriptions impératives touchant les: 1. mots-clés 2. longueurs 3. majuscules et minuscules	Table «Where» ESRI GDB: longueur maximale d'un nom: 64 caractères Nom d'attribut KW_Ueberschwemmung	 Table «Where_1» S'il est trop long, le nom doit être coupé. Nom d'attribut kw_ueberschwemmung 	 Mots-clés qui ne sont pas acceptés dans les banques de données (par exemple Value) Longueurs de noms d'attributs qui ne sont pas acceptées dans les banques de données. Les majuscules ne peuvent pas être acceptées.
11	Thèmes / TOPICs	Plusieurs thèmes par mo- dèle / banque de données	TOPIC A = CLASS AA = Attribut_1; END AA; END A; TOPIC B = CLASS AA = Attribut_2; END AA; END B:	CREATE TABLE A_AA (ID PK, Attribut_1) CREATE TABLE B_AA (ID PK, Attribut_2)	Parce qu'il n'existe pas de thèmes dans la BD, les noms des tables peuvent éventuel-lement être complétés par le nom du thème pour éviter toute ambiguïté. Plusieurs conteneurs peuvent coexister dans le fichier de transfert (un conteneur par thème). Si l'on veut savoir quelles données appartiennent à quel thème, il convient de donner des noms appropriés aux tables.

3.3 OID, Primary Key

PK = primary key (clé primaire)

Numéro	Cas de figure	Description	Exemple	Simplification (exemple SQL)	Commentaires
	(Use case)				
12	OID	OID/TID utilisé comme clé	CLASS A =	CREATE TABLE A (Si un TID est sans équivoque dans un fichier
		interne	Attribut_1;	ID PK,	de transfert (.xtf), il ne l'est généralement
			END A;	Attribut_1	pas lorsque plusieurs fichiers XTF sont
)	importés. Une renumérotation doit donc être entreprise.
					Un OID est globalement univoque. Plusieurs
					fichiers XTF peuvent être importés sans
					qu'une renumérotation soit requise.
					Inconvénient: lorsque le système de numé-
					rotation externe change, les références
					internes doivent être adaptées.
13	OID	OID/TID non utilisé comme	CLASS A =	CREATE TABLE A (Lors de l'importation, un nouveau numéro
		clé interne	Attribut_1;	ID PK,	doit être attribué à tous les objets, y compris
			END A;	xtf_id,	ceux ayant un OID.
				Attribut_1	Il n'y a pas non plus de conflits d'ID pour les
)	TID, puisqu'ils ne sont pas utilisés comme
					PK en interne.
					Avantage: si le système de numérotation
					externe change, les références internes
					n'ont pas besoin d'être adaptées.
14.a	Renvoi vers des	Avec valeur de référence de	CLASS A =	CREATE TABLE A (rBext est utilisé à la place des TID / OID de
	objets non connus	remplacement	Attribut_1;	ID PK,	l'objet inconnu (qui n'existe pas dans la BD).
	(EXTERNAL)		END A;	Attribut_1,	Par exemple dans des catalogues externes.
			CLASS B =	rB,	
			Attribut_2;	FOREIGN KEY rB_FK (rB) REFERENCES	
			END B;	B(ID)	
			ASSOCIATION C =	rBext,	

			rA {1*} A; rB (EXTERNAL) {1} B; END C;) CREATE TABLE B (ID PK, Attribut_2)	
14.b	Renvoi vers des	Avec objet proxy	CLASS A =	CREATE TABLE A (Les objets inconnus sont inscrits dans la
	objets non connus		Attribut 1;	ID PK,	table, mais sont signalés comme étant
	(EXTERNAL)		END A;	Attribut 1,	inconnus (drapeau IST_UNBEKANNT). Les
			CLASS B =	rB,	clés étrangères peuvent donc renvoyer vers
			Attribut 2;	FOREIGN KEY rB_FK (rB) REFERENCES	un enregistrement, comme c'est normale-
			END B;	B(ID)	ment le cas.
			ASSOCIATION C =)	
			rA {1*} A;	CREATE TABLE B (
			rB (EXTERNAL)	ID PK,	
			{1} B;	IST_UNBEKANNT	
			END C;	Attribut 2	
)	

3.4 Types de données de base

PK = primary key (clé primaire)

Numéro	Cas de figure	Description	Exemple	Simplification (exemple SQL)	Commentaires
	(Use case)				
15.a	Enumérations	En tant que nom	DOMAIN D = (D1, D2, D3)	CREATE TABLE D (ID VARCHAR(100) PK, Description)	 Banque de données (base SQL): tables avec contraintes (Constraints) ESRI GDB: CodedValueDomain
			CLASS A = Attribut_1: D; END A;	CREATE TABLE A (ID PK, Attribut_1, CONSTRAINT Attribut_1_FK FOREIGN KEY (Attribut1) REFERENCES D(ID) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION,)	Reprendre les noms des éléments énumérés comme ID.
15.b	Enumérations	En tant que code	DOMAIN D = (D1, D2, D3) CLASS A = Attribut_1: D; END A;	CREATE TABLE D (ID BIGINT PK, NAME VARCHAR(100) PK, Description) CREATE TABLE A (ID PK, Attribut_1, CONSTRAINT Attribut_1_FK FOREIGN KEY (Attribut1) REFERENCES D(ID) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION,)	Banque de données (base SQL): tables avec contraintes (Constraints) ESRI GDB: CodedValueDomain La liste des codes peut revêtir une importance propre au domaine de spécialité concerné. Point important dont il faut tenir compte: la liste doit être générée comme des valeurs Integer, par exemple «1, 2, 3, 4,» ou «11, 12, 15, 16,».
16	Types de données INTERLIS qui	En tant que TEXT, CLOB ou BLOB	CLASS A = Attribut_1 : HALIGNMENT;	CREATE TABLE A (ID PK,	Ces types de données ne peuvent pas être utilisés directement.

	n'existent pas dans la BD		Attribut_2 : BLACKBOX BINARY; Attribut_3: BLACKBOX XML; END A;	Attribut_1 VARCHAR(20), Attribut_2 BLOB, Attribut_3 CLOB)	La table d'aide (annexe 4.1) répertorie les différents types d'attributs (nombres et texte) acceptés dans PostGreSQL et ESRI GDB.
17.a	Plus d'une géomé- trie par table	Reprendre la structure telle quelle (1:1) dans la BD	CLASS A = Attribut_1; Geom_1: Line; Geom_2: Surface; END A;	CREATE TABLE A (ID PK, Attribut_1, Geom_1 geometry(Linestring), Geom_2 geometry(Polygon))	Tout dépend de la technologie employée, par exemple: • PostGIS: cette option est possible, mais ne peut pas être utilisée avec les logiciels de SIG courants. • ESRI GDB: elle n'est pas acceptée Il faut aussi tenir compte des possibilités éventuellement limitées de l'application.
17.b	Plus d'une géomé- trie par table	Une table spécifique pour chacun des attributs géomé- triques supplémentaires	CLASS A = Attribut_1; Geom_1: Line; Geom_2: Surface; Attribut_2; END A;	CREATE TABLE A (ID PK, Attribut_1, Geom_1 geometry(Linestring), Attribut_2,) CREATE TABLE A_geom_2 (ID PK, Geom_2 geometry(Polygon)	
17.c	Plus d'une géomé- trie par table	Dissocier la table en pré- sence d'attributs géomé- triques supplémentaires	CLASS A = Attribut_1; Geom_1: Line; Geom_2: Surface; Attribut_2; END A;	CREATE TABLE A (ID PK, Attribut_1, Geom_1 geometry(Linestring),) CREATE TABLE A_geom_2 (ID PK, Geom_2 geometry(Polygon) Attribut_2,)	
17.d	Plus d'une géomé- trie par table	Un enregistrement redon- dant par attribut géomé-	CLASS A = Attribut_1;	CREATE TABLE A (ID PK,	Deux enregistrements sont créés pour un même objet avec les mêmes valeurs pour

		trigue pour leguel soule la	Coom 1: Surface:	yef id	xtf id, Attribut 1 et Attribut 2. La seule diffé-
		trique, pour lequel seule la	Geom_1: Surface;	xtf_id,	= '
		valeur géométrique est	Geom_2: Line;	Attribut_1,	rence concerne la géométrie: le premier
		différente	Attribut_2;	Geom,	enregistrement contient la valeur Geom_1 et
			END A;	Attribut_2,	le second la valeur Geom_2.
)	Inconvénient: le type de la colonne Geom
					doit pouvoir contenir des genres différents:
					points et/ou lignes et/ou surfaces.
					Inconvénient: l'application ou l'utilisateur doit
					garantir que les valeurs redondantes pour
					xtf_id, Attribut 1 et Attribut 2 sont bien iden-
					tiques dans les différents enregistrements du
					même objet.
18	Arcs de cercle	Ils ne sont pas acceptés			De nombreuses BD acceptent les arcs de
		dans la BD			cercle. S'ils ne le sont pas (par la BD ou par
					l'application SIG), la géométrie doit être
					modifiée.
					Pour éviter des pertes de données dans un
					tel cas, la géométrie doit faire l'objet d'un
					stockage (et d'une mise à jour) supplémen-
					taire dans une structure de données propre
					(un BLOB par exemple).
19	Recouvrements	Conversion en une géomé-	A EXTENDS Surface =		La géométrie doit être modifiée parce qu'elle
		trie conforme à l'ISO/OGC	SURFACE WITHOUT OVERLAPS >		est incompatible avec les normes internatio-
		(élément simple ou simple	0.002;		nales.
		feature)	,		Pour éviter des pertes de données, la géo-
		,			métrie doit faire l'objet d'un stockage (et
					d'une mise à jour) supplémentaire dans une
					structure de données propre (un BLOB par
					exemple).
20	Recouvrements	Condition: deux surfaces ne	A EXTENDS Surface =		Condition difficile à intégrer:
20	1.000avionionio	peuvent pas se recouvrir de	SURFACE WITHOUT OVERLAPS >		Banque de données (base SQL): avec
		plus de 0,002 mètre	0.002;		déclencheur (Trigger)
		pius de 0,002 mene	0.002,		ESRI GDB: contrôle seul
					- LON ODD. COIN DIE SEUI

							espect de telles restrictions peut aussi assuré au stade de l'importation.
21	Restriction	Un attribut d'une classe est	CLASS A =			Con	dition difficile à intégrer:
		dépendant d'un autre attribut	Attribut_1;			•	Banque de données (base SQL): avec
			Attribut_2;				déclencheur (Trigger)
			MANDATORY CONSTRAINT			•	ESRI GDB: contrôle seul
			Attribut_1 <= Attribut_2;				
			END A;			Le re	espect de telles restrictions pourrait
						auss	si être assuré au stade de l'importation.
22	Précision	INTERLIS indique la préci-	COORD	•	ESRI GDB:	•	PostGreSQL: les coordonnées sont
		sion des coordonnées via le	480000.000 840000.000 [m],		Résolution : 1mm		stockées à leur pleine résolution (avec
		nombre de chiffres figurant	7000.000 300000.000 [m],		Tolérance (recommandation ESRI):		tous les chiffres après la virgule).
		après la virgule (soit 1 mm	200.000 5000.000 [m];		Au moins le double de la	•	ESRI GDB: les concepts de tolérance
		dans le cas présent)			résolution, soit 2mm		et de résolution sont connus. Les
							coordonnées sont donc «alignées»
							sur une grille virtuelle avec une cer-
							taine distance entre les mailles. La ré-
							solution ne doit pas être définie de
							manière trop grossière.
23	Type de données	Un type d'attribut est défini	CLASS A =			•	PostGreSQL: GUID
	OID	comme OID UUID avec un	Attribut_1 : MANDATORY INTER-			•	ESRI GDB: GUID
		domaine de valeurs	LIS.UUIDOID;			•	Oracle: RAW(16)
			END A;				` ,

3.5 CHBase

PK = primary key (clé primaire)

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
24	chbase: Loca- lisedText	Un type d'attribut est défini comme LocalisedText.	STRUCTURE LocalisedText = Language: LanguageCode_ISO639_1; Text: MANDATORY TEXT; END LocalisedText;	CREATE TABLE A (ID PK, Attribut_1, Attribut_1_Language)	Une seule langue étant acceptée, un attribut peut être inséré dans la table principale.
			CLASS A = Attribut_1 :LocalisedText; END A;		
25.a	chbase:Multilingua IText	Attribut défini comme une table spécifique	STRUCTURE LocalisedText = Language: LanguageCode_ISO639_1; Text: MANDATORY TEXT; END LocalisedText; STRUCTURE MultilingualText = LocalisedText : BAG {1*} OF LocalisedText; UNIQUE (LOCAL) LocalisedText:Language; END MultilingualText; CLASS A = Attribut 1 : LocalisationCH_V1. MultilingualText; END A;	CREATE TABLE A_Attribut1 (ID PK, A_Attribut1, Language, Text CONSTRAINT A_Attribut1_FK FOREIGN KEY (A_Attribut1) REFERENCES A(ID) MATCH SIMPLE ON UPDATE NO AC- TION ON DELETE NO ACTION,) CREATE TABLE A (ID PK)	La structure MultilingualText est modélisée comme une table contenant une clé étrangère pour établir le lien avec la table principale A.

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
25.b	chbase:Multilingua IText	Insérer dans la table princi- pale	STRUCTURE LocalisedText = Language: LanguageCode_ISO639_1; Text: MANDATORY TEXT; END LocalisedText; STRUCTURE MultilingualText = LocalisedText : BAG {1*} OF LocalisedText; UNIQUE (LOCAL) LocalisedText:Language; END MultilingualText; CLASS A = Attribut 1 : LocalisationCH_V1. MultilingualText; END A;	CREATE TABLE A (ID PK, Attribut1_DE, Attribut1_FR, Attribut1_IT)	Cette solution est envisageable, mais peut se révéler déplaisante parce que la table principale contient de nombreux attributs.
26	chbase: CatalogueReference	Un type d'attribut est défini comme CatalogueRefe- rence.	CLASS X EXTENDSCatalogues.ltem = Code: MANDATORY TEXT; Description: MANDATORY TEXT; END X; STRUCTURE Y EXTENDSCatalogues.CatalogueReference = Reference (EXTENDED): REFER-ENCE TO X; END Y; CLASS A = Attribut_1: Y;	CREATE TABLE X (ID PK, Code, Description) CREATE TABLE A (ID PK, Attribut_1 CONSTRAINTAttribut_1_FK FOREIGN KEY (Attribut_1) REFERENCES X(Code) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION,)	 Banque de données (base SQL): la table X contient toutes les valeurs possibles du catalogue. Le lien avec la table principale est alors établi à l'aide d'une clé étrangère. ESRI GDB: CodedValueDomains

Numéro	Numéro Cas de figure Description (Use case)		Exemple	Simplification (exemple SQL)	Commentaires	
			END A;			
27.a	chbase: Item		CLASS X EXTENDSCatalogues.ltem = Code : MANDATORY TEXT; Description : MANDATORY TEXT; END X;	CREATE TABLE Item (ID PK, Class, // z.B. ,X' Code, Description)	Une table de codes pour toutes les classes qui étendent Item. Facilite/permet l'utilisation éventuelle de la bibliothèque de logiciels existants.	
27.b	plat Item comme CatalogueReference. code : MAND Description : I END X; STRUCTURE Y EXTENDSCatalogues.Ca Reference (E) ENCE TO X; END Y; CLASS A =		EXTENDSCatalogues.ltem = Code: MANDATORY TEXT; Description: MANDATORY TEXT; END X; STRUCTURE Y EXTENDSCatalogues.CatalogueReference = Reference (EXTENDED): REFER-ENCE TO X; END Y;	CREATE TABLE A (ID PK, Attribut_1_Code, Attribut_1_Description)	Forte simplification pour les exploitations, modification de la table de codes relativement malaisée en revanche.	
28	chbase: MultLine	Un type géométrique est défini comme MultiLine.	Line = POLYLINE WITH (STRAIGHTS, ARCS) VERTEX Coord2; STRUCTURE LineStructure = Line: Line; END LineStructure; STRUCTURE MultiLine = Lines: BAG {1*} OF LineStructure;	CREATE TABLE X (ID PK, Geo_Obj geometry MultiLinestring,)	Dépend de la technologie : PostGIS: MultiPart accepté ESRI GDB: MulitPart accepté	

Numéro	Cas de figure (Use case)	Description	Exemple	Simplification (exemple SQL)	Commentaires
			END MultiLine; CLASS X = Geo_Obj : MANDATORY MultiLine; END X;		
29	chbase: MultiSur- face	Un type géométrique est défini comme MultiSurface.	Surface = SURFACE WITH (STRAIGHTS, ARCS) VERTEX Coord2; STRUCTURE SurfaceStructure = Surface: Surface; END SurfaceStructure; STRUCTURE MultiSurface = Surfaces: BAG {1*} OF SurfaceStructure; END MultiSurface; CLASS X = Geo_Obj : MANDATORY MultiSurface;	CREATE TABLE X (ID PK, Geo_Obj geometry MultiPolygon,)	Dépend de la technologie: PostGIS: MultiPart accepté ESRI GDB: MultiPart accepté

4 Annexe

4.1 Types de données «Nombres» et «Texte»: INTERLIS/PostGreSQL/ESRI GDB

	INTERLIS	PostGreSQL		ESRI GDB		
		Smallint	De -32768 à +32767	Short integer	De -32,768 à 32,767	
	Domaines de valeurs: par exemple 0 130	Integer	De -2147483648 à +2147483647	Long integer	De -2,147,483,648 à 2,147,483,647	
Nombros		Bigint	De -9223372036854775808 à 9223372036854775807			
Nombres	Domaines de valeurs: par exemple 0.0 130.0	decimal	no limit	Single-precision floating-point number (float)	De -3.4E38 à 1.2E38 env.	
		numeric	no limit	Double-precision floating-point number (double)	De -2.2E308 à 1.8E308 env.	
		real	6 decimal digits precision			
		double precision	15 decimal digits precision			
Toute	Avec définition de	character varying(n), var- char(n)	variable-length with limit	Texte(longueur)		
Texte	longueur: TEXT*30	character(n), char(n)	fixed-length, blank padded			
		text	variable unlimited length			