

Umsetzung von konzeptionellen Geodatenmodellen

Am Beispiel von INTERLIS 2 Modellen und SQL

Best-Practice Beispiele

Erstellt: Mai 2014

Auftraggeber:

KOGIS, Bundesamt für Landestopografie swisstopo

Autoren:

Inser SA & Eisenhut Informatik AG

Inhaltsverzeichnis

Inha	tsverzeichnis	3
	Einleitung	
	Generelle Hinweise	
	Wichtige Punkte der Schemaumwandlung	
3.1	Umwandlung von objektorientierten Strukturen	
3.2	Klassennamen, Attributnamen	
3.3	OID, PrimaryKey	
3.4	Grunddatentypen	
3.5	CHBase	
4	Anhang	
4.1	"Zahlen" und "Text" Datentypen: INTERLIS/PostGreSQL/ESRI GDB	

1 Einleitung

Diese Sammlung an Umsetzungsbeispielen ist als Best-Practice zu verstehen und soll eine Hilfestellung sein, wenn man vom konzeptionellen, objektorientierten Modell in INTERLIS 2 zu einem vereinfachten, relationalen Modell in SQL kommen möchte. Die Motivation dazu ergab sich einerseits aus den Erfahrungen diverser Umsetzungsprojekte bei KOGIS und dem BAFU. Andererseits nimmt swisstopo gemäss GeolG/GeolV die Aufgabe wahr, technische und qualitative Anforderungen an die Geobasisdaten des Bundesrechts zu stellen, insbesondere an die Modellierung.

Die Liste mit typischen Konstrukten ist nicht abschliessend und kann beliebig erweitert werden. Ebenso kann man sich für jedes Konstrukt mehrere Umsetzungsmöglichkeiten vorstellen. Hier war der Anspruch, dass einige gängige Möglichkeiten aufgezeigt werden. In diesem Sinn soll dies ein "lebendes" Dokument sein.

2 Generelle Hinweise

Ein konzeptionelles Modell dient der Dokumentation und der Harmonisierung von Geodaten. Es dokumentiert die Struktur sowie die Semantik eines Geodatensatzes systemunabhängig. Möchte man ein konzeptionelles Modell in logische Datenbankensysteme umsetzen, muss man sich vorab einige allgemeine Gedanken machen. Es ist beispielsweise abzuklären was der Zweck der logischen Anwendung ist und welche fachlichen Anforderungen zu erfüllen sind. Deshalb muss man sich generell von der Vorstellung lösen, dass ein konzeptionelles, objektorientiertes Modell 1:1 in ein logisches Modell umwandelbar ist.

Das vorliegende Dokument soll kritische Punkte der Umsetzung anhand von Beispielen erläutern. Es soll dabei nicht ausschliesslich auf nur eine Datenbanktechnologie Rücksicht genommen werden; vielmehr werden Beispiele und Ratschläge gegeben, welche Punkte beachtet werden sollen.

Es gibt meist mehrere Möglichkeiten ein konzeptionelles Modell in ein konkretes Datenbankmodell umzuwandeln. Eine wichtige Frage ist daher, wie ein implementiertes Modell gebraucht werden wird. Macht es z.B. Sinn eine flache Struktur zu verwenden, oder eine höher modellierte Datenbank mit vielen Tabellen und Bedingungen zu erstellen? Welche Personen oder Prozesse (Nutzergruppe) und mit welcher Software werden die Datenbank benutzen? Es empfiehlt sich auch einen Fachspezialisten aus der Nutzergruppe beizuziehen, der überprüft, ob eine erstellte Struktur auch aus vorgesehener Nutzersicht benutzbar ist.

Die Technologien, welche für die Implementierung der Datenbank verwendet werden, spielen ebenfalls eine grosse Rolle bei der Implementierung. Einige Datenbanksysteme ermöglichen es harte Bedingungen zu implementieren; d.h. dass es unmöglich ist, nicht konforme Daten in der Datenbank zu speichern. Einige generelle Hinweise zur Schemaumwandlung sind folgende Punkte:

- INTERLIS 2 ist objektorientiert. Ein INTERLIS 2 Modell muss daher entschachtelt und in ein relationales Modell umgewandelt werden; Haupt- und Fremdschlüssel müssen generiert werden, um Beziehungen abbilden zu können.
- INTERLIS 2 ermöglicht es andere Modelle oder Teile von Modellen zu importieren. Die wahre Komplexität eines INTERLIS 2 Modells kann daher grösser sein, als auf den ersten Blick ersichtlich.
- INTERLIS 2 Modelle sind in Topics und Klassen strukturiert. Viele Datenbanksysteme kennen nur Schemas und Tabellen.
- Umgekehrt unterstützt INTERLIS Multipart-Objekte nur via Strukturen, wie sie z.B. in CH-Base Datenmodellen vordefiniert sind. Gegebenenfalls müssen Datenbanken so modelliert werden, dass sie nur Singlepart-Objekte unterstützten.

- INTERLIS 2 unterstützt mehrere Geometrien pro Klasse. In den meisten GIS-Datenbanksystemen existieren diese Konstrukte nicht und eine Klasse mit zwei Geometrien muss daher meistens in zwei oder drei Tabellen aufgeteilt werden.
- INTERLIS 2 unterstützt Strukturattribute. In den meisten handelsüblichen Datenbanksystemen und GIS existieren diese Konstrukte nicht, und eine Klasse mit Strukturattributen muss daher meistens in zwei oder mehr Tabellen aufgeteilt werden.
- INTERLIS 2 unterstützt Bedingungen innerhalb einer Klasse; z.B. dass ein Attribut grösser oder kleiner als ein anderes Attribut derselben Klasse sein muss. In vielen Datenbanksystemen sind solche Bedingungen nur mit Schwierigkeit modellierbar.
- INTERLIS 2 unterstützt Aufzählungen/kodierte Domains; nicht alle Datenbanksysteme unterstützten diese Konstrukte. Eine Möglichkeit Aufzählungen umzusetzen sind z.B. Referenztabellen.

Des Weiteren soll auch erwähnt werden, dass eine Datenbank, welche modellkonforme Daten aufnimmt nicht unbedingt selber modellkonform aufgebaut sein muss. Eine flache Struktur kann z.B. legitim sein. Es soll deshalb auch darauf hingewiesen werden, dass es möglich ist viele Bedingungen über Import- und Exportprozesse abzufangen.

3 Wichtige Punkte der Schemaumwandlung

3.1 Umwandlung von objektorientierten Strukturen

Hinweis: die Nummerierung erlaubt die Zuordnung eines Use Cases (gleiches Beispiel, Spalten 2 und 4) zu mehreren Vereinfachungsmöglichkeiten (Spalte 5).

PK = primary key

Nummer	Konstrukt Use Case	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
1.a	Vererbung	1:1	CLASS A (ABSTRACT) =	CREATE TABLE A (Für jede Klasse wird eine Tabelle erstellt.
			Attribut_1;	ID PK,	
			END A;	Attribut_1	
)	
			CLASS B EXTENDS A =	CREATE TABLE B (
			Attribut_2;	ID PK,	
			END B;	Attribut_2	
)	
1.b	Vererbung	Superclass	CLASS A (ABSTRACT) =	CREATE TABLE A (Gleiches Beispiel wie Nummer 1.a. Dieses
			Attribut_1;	ID PK,	Mal wird eine Tabelle für jede Wurzelklasse
			END A;	Attribut_1,	erstellt.
				Attribut_2	Beschränkung: wenn viele Tabellen auf die
			CLASS B EXTENDS A =)	Wurzelklasse referenziert werden.
			Attribut_2;		
			END B;		
1.c	Vererbung	Subclass	CLASS A (ABSTRACT) =	CREATE TABLE B (Gleiches Beispiel wie Nummer 1.a. Eine
			Attribut_1;	ID PK,	Tabelle wird für jede konkrete Klasse erstellt.
			END A;	Attribut_1,	
				Attribut_2	
			CLASS B EXTENDS A =)	
			Attribut_2;		
			END B;		
2.a	Strukturen	Fremdschlüssel bei Struktur	STRUCTURE A =	CREATE TABLE A (Die Struktur ist als eine Tabelle modelliert,

Nummer	Konstrukt Use Case	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case		Attribut_1; Attribut_2; END A; CLASS B = Attribut_3: A; END B;	ID PK, B_Attribut_3, Attribut_1, Attribut_2, FOREIGN KEY B_Attribut_3_FK (B_Attribut_3) REFERENCES B (ID)) CREATE TABLE B (die einen Fremdschlüssel enthält, um die Verbindung mit der Haupttabelle B zu ma- chen. Wenn das Strukturattribut ein LIST/BAG OF ist, braucht es noch ein Index-Feld in der Tabelle der Struktur.
				ID PK	
2.b	Strukturen	Fremdschlüssel bei Strukturelement in Haupttabelle	STRUCTURE A = Attribut_1; Attribut_2; END A; CLASS B = Attribut_3: A; END B;	CREATE TABLE A (ID PK, Attribut_1, Attribut_2) CREATE TABLE B (ID PK, Attribut_3, FOREIGN KEY Attribut_3_FK (Attribut_3) REFERENCES A(ID))	Gleiches Beispiel wie 2.a. Der Fremdschlüssel ist nun in der Haupttabelle enthalten. Wenn ein Strukturattribut als LIST/BAG OF definiert ist, kann diese Lösung nicht verwendet werden. Es fehlt die Möglichkeit, ein Index-Feld zu definieren.
2.c	Strukturen	Strukturelemente als JSON (oder XML) in Haupttabelle	STRUCTURE A = Attribut_1; Attribut_2; END A; CLASS B = Attribut_1: A; END B;	CREATE TABLE B (ID PK, Attribut_1 CLOB)	Der Datentyp hängt von der Technologie ab, z.B. können CLOB oder TEXT verwendet werden.
2.d	Strukturen	Generischer Fremdschlüssel	STRUCTURE A = Attribut_1; Attribut_2; END A;	CREATE TABLE A (ID PK, Attribut_1, Attribut_2,	PARENTID ist der generische Fremdschlüssel auf die Tabelle der Klasse mit dem Strukturattribut. Aber da die selbe Struktur in verschiedenen Klassen für Strukturattribute

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
			CLASS B =	PARENTID,	verwendet werden kann, weiss man nicht
			Attribut_1: A;	PARENT_FQNAME VARCHAR(1000)	auf welche Tabelle der Fremdschlüssel geht.
			END B;)	Also enthält PARENT_FQNAME den qualifi-
				CREATE TABLE B (zierten Attributnamen des Strukturattributes
				ID PK	("ModelNa-
)	me.TopicName.ClassName.AttrName").
3	Strukturen	Strukturelemente in Haupt-	STRUCTURE A =	CREATE TABLE B (Damit kann man vermeiden, zu viele Tabel-
		tabelle einbetten	Attribut_1 : (D1,D2) ;	ID PK,	len zu erstellen. Beschränkung: wenn die
			Attribut_2 : (D3,D4) ;	Attribut_3_1 (D1,D2),	Domains sehr gross sind.
			END A	Attribut_3_2 (D3,D4),	Die Aufzählungen können dann wie in den
				Attribut_4_1 (D1,D2),	Beispielen 17 und 18 umgesetzt werden.
			CLASS B =	Attribut_4_2 (D3,D4)	Wenn ein Strukturattribut als LIST/BAG OF
			Attribut_3 : A;)	definiert ist, kann diese Lösung nicht ver-
			Attribut_4 : A ;		wendet werden.
			END B;		
4.a	Assoziationen	Ohne Zwischentabelle: nur	CLASS A =	CREATE TABLE A (Die Verbindung zwischen zwei Tabellen wird
		bei 1:1 und 1:n, ohne DB-	Attribut_1;	ID PK,	mit einem Fremdschlüssel gemacht.
		Constraints	END A;	Attribut_1,	Wird mühsam, wenn die Assoziation einer
			CLASS B =	rB,	Erweiterung Attribute enthält.
			Attribut_2;)	
			END B;	CREATE TABLE B (
			ASSOCIATION C =	ID PK,	
			rA {1*} A;	Attribut_2	
			rB {1} B;)	
			END C;		
4.b	Assoziationen	Ohne Zwischentabelle: nur	CLASS A =	CREATE TABLE A (Die Verbindung zwischen zwei Tabellen wird
		bei 1:1 und 1:n, mit DB-	Attribut_1;	ID PK,	mit einem Fremdschlüssel gemacht.
		Constraints	END A;	Attribut_1,	Wird mühsam, wenn die Assoziation einer
			CLASS B =	rB,	Erweiterung Attribute enthält.
			Attribut_2;	FOREIGN KEY rB_FK (rB) REFERENCES	ESRI GDB: nicht umsetzbar.
			END B;	B(ID)	
			ASSOCIATION C =)	

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
			rA {1*} A;	CREATE TABLE B (
			rB {1} B;	ID PK,	
			END C;	Attribut_2	ļ
)	
5.a	Assoziationen	Mit Zwischentabelle: bei	CLASS A =	CREATE TABLE A (Die Verbindung zwischen zwei Tabellen wird
		n:m, ohne DB-Constraints	Attribut_1;	ID PK,	mit einer Zwischentabelle gemacht.
			END A;	Attribut_1,	
			CLASS B =)	
			Attribut_2;	CREATE TABLE B (
			END B;	ID PK,	
			ASSOCIATION C =	Attribut_2	
			rA {1*} A;)	
			rB {1*} B;	CREATE TABLE C (
			END C;	rA,	
				rB	
)	
5.b	Assoziationen	Mit Zwischentabelle: bei n:m	CLASS A =	CREATE TABLE A (Die Verbindung zwischen zwei Tabellen wird
		mit DB-Constraints	Attribut_1;	ID PK,	mit einer Zwischentabelle gemacht.
			END A;	Attribut_1,	ESRI GDB: nicht umsetzbar.
			CLASS B =)	
			Attribut_2;	CREATE TABLE B (
			END B;	ID PK,	
			ASSOCIATION C =	Attribut_2	
			rA {1*} A;)	
			rB {1*} B;	CREATE TABLE C (
			END C;	rA,	
				rB,	
				FOREIGN KEY rA_FK (rA) REFERENCES	
				A(ID),	
				FOREIGN KEY rB_FK (rB) REFERENCES	
				B(ID)	
)	

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
6	Assoziationen	Mit Löschweitergabe	CLASS A = Attribut_1; END A; CLASS B = Attribut_2; END B; ASSOCIATION C = A {1*} A; B -<#> {1} B; END C;	CREATE TABLE A (ID PK, Attribut_1, Attribut_3, CONSTRAINT Attribut_3_FK FOREIGN KEY (Attribut3) REFERENCES B(ID) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE CASCADE,) CREATE TABLE B (ID PK, Attribut_2)	SQL basierte Datenbank: die nötige Einschränkungen müssen als "constraints" definiert werden. Die Einschränkungen sind evtl. mühsam beim Importvorgang, da die Reihenfolge der Objekte/Records wichtig ist. Man kann nicht "Kinder" importieren, wenn die "Eltern" nicht existieren. ESRI GDB: ESRI GDB: Je nach Lizenz sind unterschiedliche Möglichkeiten verfügbar. Grundsätzlich können zwei RelationshipClasses erstellt werden: Simple: da sie keine Einschränkungen enthalten, ist die Verbindung zur Visualisierung in ArcMap. Composite: "cascade" Einschränkungen wenn ein Objekt gelöscht wird.
7.a	Assoziationen	Rekursives Modell in DB flachwalzen	CLASS A = Attribut_1; END A; ASSOCIATION C = rA1 {1*} A; rA2 {1} A; END C;	CREATE TABLE A (ID PK, k0_Attribut_1, k1_ID, k1_rA2, k1_Attribut_1, k2_ID, k2_rA2,	Eine rekursive Struktur wird in der Regel modelliert, um eine unendliche Objektstruktur aufnehmen zu können. Will man eine solche Struktur in eine Tabelle "flachwalzen" muss man sich auf eine endliche Anzahl Objekte begrenzen, da eine Tabelle eine fixe Anzahl Spalten hat. Im Beispiel können maximal 5 direkte oder indirekte A Objekte
				k2_Attribut_1, k3_ID, k3_rA2,	mit einem Wurzel-Objekt gespeichert werden. (Entspricht Umsetzung #10 angewendet auf eine rekursive Assoziation).

Nummer	Konstrukt Use Case	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
7.b	Assoziationen	Rekursives Modell in DB als	CLASS A =	k3_Attribut_1, k4_ID, k4_rA2, k4_Attribut_1, k5_ID, k5_rA2, k5_Attribut_1) CREATE TABLE A (Die Attributwerte sind redundant vorhanden. Der Anwender/Die Applikation muss bei der Erfassung sicherstellen, dass die mehrfach vorhandenen Daten für die identischen Objekte identische Inhalte haben. Statt jedes Objekt mit seinen Werten einzeln
7.0	ASSOZIALIONELI	JSON (oder XML) in Haupt-tabelle flachwalzen	Attribut_1; END A; ASSOCIATION C = rA1 {1*} A; rA2 {1} A; END C;	ID PK, k0_Attribut_1, kn_Objekte CLOB)	in Records zu speichern, kann das von einem Wurzelobjekt erreichbare Geflecht in einem geeigneten Format serialisiert und als ein Spaltenwert mit dem Wurzel-Objekt gespeichert werden. (Entspricht Umsetzung #2.c angewendet auf eine rekursives Ob- jektgeflecht). Abfragen mit Kriterien auf den Objekten des Geflechts sind so schwierig zu realisieren. Die Attributwerte sind redundant vorhanden. Der Anwender/Die Applikation muss bei der Erfassung sicherstellen, dass die mehrfach vorhandenen Daten für die identischen Objekte identische Inhalte haben.
8	Assoziationen	Klassen zusammen in eine Tabelle "flachwalzen"	CLASS A = Attribut_1; END A; CLASS B = Attribut_2; END B; ASSOCIATION C = rA {1*} A; rB {1*} B;	CREATE TABLE A (ID_CLASSA, ID_CLASSB, Attribut_1, Attribut_2)	Vorteil: Auswertungen können ohne DB- Joins gemacht werden. Nachteile: Die Attributwerte sind redundant vorhanden. Der Anwender/Die Applikation muss bei der Erfassung sicherstellen, dass die mehrfach vorhandenen Daten für die identischen Objekte identische Inhalte haben.

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
			END C;		
9	Baskets	Mehrere Baskets des selben	TOPIC A =	CREATE TABLE A (Im transferfile kann man mehrere baskets
		TOPICs pro Datenbank	CLASS AA =	ID PK,	pro Topic haben. Wenn man wissen will,
			Attribut_1;	Attribut_1,	welche Daten zu welchem Interlis-Basket
			END AA;	BasketID	gehören, braucht man ein Extrafeld.
			END A;	FOREIGN KEY BasketID _FK (BasketID)	
				REFERENCES Basket(ID),	
)	
				CREATE TABLE Basket (
				ID PK)	

3.2 Klassennamen, Attributnamen

PK = primary key

Nummer	Konstrukt Use Case	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
10	Namen	Tabelle, Spalten umbenne- nen wegen Konflikt mit DB- Regeln oder zwingenden Vorgaben: 1. Schlüsselwörter 2. Längen 3. Klein- und Gross- schreibung	Tabelle "Where" ESRI file GDB: max field name length: 64 characters Attributename KW_Ueberschwemmung	Tabelle "Where_1" Falls zu lang, muss man der Name ausschneiden. Attributename kw_ueberschwemmung	Schlüsselwörter die in Datenbanken nicht unterstützt werden (z.B. Value) Längen von Attributenamen die in Datenbanken nicht unterstützt werden. Grossschreibung können nicht unterstützt werden.
11	TOPICs	Mehrere TOPICs pro Modell/Datenbank	TOPIC A = CLASS AA = Attribut_1; END AA; END A; TOPIC B = CLASS AA = Attribut_2; END AA; END B;	CREATE TABLE A_AA (ID PK, Attribut_1) CREATE TABLE B_AA (ID PK, Attribut_2)	Weil in der DB keine TOPICs existieren, müssen für eindeutige Tabellennamen diese evtl. mit dem TOPIC-Namen ergänzt werden. Im transferfile kann man mehrere baskets haben (ein Basket pro Topic). Wenn man wissen will, welche Daten zu welchem Topic gehören, braucht man eine entsprechende Namensgebung der Tabellen.

3.3 OID, PrimaryKey

PK = primary key

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
12	OID	OID/TID als interner Schlüs-	CLASS A =	CREATE TABLE A (TID ist eindeutig in einem Transferfile (.xtf),
		sel	Attribut_1;	ID PK,	aber ist i.d.R. nicht eindeutig wenn mehrere
			END A;	Attribut_1	XTF Files importiert werden. Es muss da-
)	rum eine Umnummerierung stattfinden.
					OID ist global eindeutig.Mehrere XTF Files
					können ohne Umnummerierung importiert
					werden.
					Nachteil: Wenn sich das externe Nummerie-
					rungsystem ändert, müssen die internen
					Referenzen angepasst werden.
13	OID	OID/TID nicht als interner	CLASS A =	CREATE TABLE A (Beim Import muss für alle Objekte, auch
		Schlüssel	Attribut_1;	ID PK,	solche mit einer OID eine neue Nummer
			END A;	xtf_id,	vergeben werden.
				Attribut_1	Auch bei TIDs keine ID-Konflikte, da die
)	TIDs intern nicht als PK verwendet wird.
					Vorteil: Wenn sich das externe Nummerie-
					rungsystem ändert, müssen die internen
					Referenzen nicht angepasst werden.
14.a	Verweis auf nicht	Mit alternativem Referenz-	CLASS A =	CREATE TABLE A (rBext ist für die TID/OID des Objektes das
	bekannte Objekte	wert	Attribut_1;	ID PK,	unbekannt, nicht in der DB vorhanden, ist.
	(EXTERNAL)		END A;	Attribut_1,	z.B. in externen Katalogen.
			CLASS B =	rB,	
			Attribut_2;	FOREIGN KEY rB_FK (rB) REFERENCES	
			END B;	B(ID)	
			ASSOCIATION C =	rBext,	
			rA {1*} A;)	
			rB (EXTERNAL) {1} B;	CREATE TABLE B (

			END C;		ID PK,	
					Attribut_2	
)	
14.b	Verweis auf nicht	Mit Proxy-Objekt	CI	LASS A =	CREATE TABLE A (Die unbekannten Objekte werden in die
	bekannte Objekte			Attribut 1;	ID PK,	Tabelle eingetragen, aber als unbekannt
	(EXTERNAL)		END A;		Attribut 1,	markiert (mit dem Flag IST_UNBEKANNT).
			CLASS B =		rB,	Fremdschlüssel können somit wie normal
			Attribut 2;		FOREIGN KEY rB_FK (rB) REFERENCES	auf einen Record verweisen
			END B;		B(ID)	
			ASSOCIATION C	=)	
			rA {1*} A;		CREATE TABLE B (
				rB (EXTERNAL)	ID PK,	
				{1} B;	IST_UNBEKANNT	
			END C;		Attribut 2	

3.4 Grunddatentypen

PK = primary key

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
15.a	Aufzählungen	Als Name	DOMAIN D = (CREATE TABLE D (SQL basierte Datenbank: Tabellen mit
			D1,	ID VARCHAR(100) PK,	Constraints
			D2,	Description	ESRI GDB: CodedValueDomain
			D3))	
			CLASS A =	CREATE TABLE A (Name der Aufzählelemente als ID überneh-
			Attribut_1: D;	ID PK,	men.
			END A;	Attribut_1,	
				CONSTRAINT Attribut_1_FK FOREIGN	
				KEY (Attribut1) REFERENCES D(ID)	
				MATCH SIMPLE ON UPDATE NO AC-	
				TION ON DELETE NO ACTION,	
)	
15.b	Aufzählungen	Als Code	DOMAIN D = (CREATE TABLE D (SQL basierte Datenbank: Tabellen mit
			D1,	ID BIGINT PK,	Constraints
			D2,	NAME VARCHAR(100) PK,	ESRI GDB: CodedValueDomain
			D3)	Description	
			CLASS A =)	Die Codeliste kann eine Fachbedeutung
			Attribut_1: D;	CREATE TABLE A (enthalten. Wichtig zu beachten: wie die
			END A;	ID PK,	Integer generieren. Z. B. "1, 2, 3, 4," oder
				Attribut_1,	"11, 12, 15, 16, …".
				CONSTRAINT Attribut_1_FK FOREIGN	
				KEY (Attribut1) REFERENCES D(ID)	
				MATCH SIMPLE ON UPDATE NO AC-	
				TION ON DELETE NO ACTION,	
)	
16	Datentypen von	Als TEXT, CLOB oder BLOB	CLASS A =	CREATE TABLE A (Datentypen können nicht direkt verwendet
	Interlis die in DB		Attribut_1 : HALIGNMENT;	ID PK,	werden.

	nicht existieren		Attribut_2 : BLACKBOX BINARY;	Attribut_1 VARCHAR(20),	Die Hilfstabelle (Anhang 4.1) enthält die
			Attribut_3: BLACKBOX XML;	Attribut_2 BLOB,	verschiedenen Attributtypen (Zahlen und
			END A;	Attribut_3 CLOB	Text), die in PostGreSQL und in ESRI GDB
)	unterstützt sind.
17.a	Mehr als eine	Struktur 1:1 in DB überneh-	CLASS A =	CREATE TABLE A (Es hängt von der Technologie ab. Z.B.:
	Geometrie pro	men	Attribut_1;	ID PK,	PostGIS: diese Konstruktion ist mög-
	Tabelle		Geom_1: Line;	Attribut_1,	lich, aber mit gängiger GIS-Software
			Geom_2: Surface;	Geom_1 geometry(Linestring),	nicht zu benutzen.
			END A;	Geom_2 geometry(Polygon)	ESRI GDB: wird nicht unterstützt
)	Man muss auch die evtl. begrenzten Mög-
					lichkeiten der Applikation beachten.
17.b	Mehr als eine	zusätzliche Geometrie-	CLASS A =	CREATE TABLE A (
	Geometrie pro	Attribute je in einer eigenen	Attribut_1;	ID PK,	
	Tabelle	Tabelle	Geom_1: Line;	Attribut_1,	
			Geom_2: Surface;	Geom_1 geometry(Linestring),	
			Attribut_2;	Attribut_2,	
			END A;)	
				CREATE TABLE A_geom_2 (
				ID PK,	
				Geom_2 geometry(Polygon)	
)	
17.c	Mehr als eine	Tabelle bei zusätzlichen	CLASS A =	CREATE TABLE A (
	Geometrie pro	Geometrie-Attributen auf-	Attribut_1;	ID PK,	
	Tabelle	spalten	Geom_1: Line;	Attribut_1,	
			Geom_2: Surface;	Geom_1 geometry(Linestring),	
			Attribut_2;)	
			END A;	CREATE TABLE A_geom_2 (
				ID PK,	
				Geom_2 geometry(Polygon)	
				Attribut_2,	
)	
17.d	Mehr als eine	pro Geometrie-Attribut ein	CLASS A =	CREATE TABLE A (Aus einem Objekt werden zwei Records mit
	Geometrie pro	redundanter Record bei dem	Attribut_1;	ID PK,	den selben Werten für xtf_id, Attribut 1 und
	Tabelle	nur der Geometrie-Wert	Geom_1: Surface;	xtf_id,	Attribut 2. Der erste Record enthält als geom

					1
		unterschiedlich ist	Geom_2: Line;	Attribut_1,	den Wert von Geom_1; der zweite Record
			Attribut_2;	Geom,	enthält als geom den Wert von Geom_2.
			END A;	Attribut_2,	Nachteil: Typ der Spalte Geom kann unter-
)	schiedliche Arten enthalten Punkte und/oder
					Linien und/oder Flächen.
					Nachteil: Die Applikation bzw. der Nutzer
					muss sicherstellen, dass die redundanten
					Werte für xtf_id, Attribut 1 und Attribut 2 in
					den verschiedenen Records für das selbe
					Objekt identisch sind.
18	Kreisbögen	Kreisbögen nicht in DB			Viele DBs unterstützen Kreisbögen. Wenn
		unterstützt			Kreisbögen (durch die DB oder die GIS-
					Applikation) nicht unterstützt werden, muss
					die Geometrie verändert werden.
					Um in diesem Fall Datenverlust zu vermei-
					den, muss die Geometrie zusätzlich in einer
					eigenen Datenstruktur (z.B. als BLOB)
					gespeichert (und nachgeführt) werden.
19	Überlappungen	Umwandlung in eine	A EXTENDS Surface =		Die Geometrie muss verändert werden da
		ISO/OGC (simple feature)	SURFACE WITHOUT OVERLAPS >		nicht kompatibel mit internationalen Stan-
		konforme Geometrie	0.002;		dards.
					Um Datenverlust zu vermeiden muss die
					Geometrie zusätzlich in einer eigenen Da-
					tenstruktur (z.B. als BLOB) gespeichert (und
					nachgeführt) werden.
20	Überlappungen	Bedingung: zwei Flächen	A EXTENDS Surface =		Kompliziert zu integrieren :
		können sich nicht mehr als	SURFACE WITHOUT OVERLAPS >		SQL based Datenbank: mit Trigger
		0.002 Meter überschneiden	0.002;		ESRI GDB: nur Überprüfung
			, i		
					Solche Einschränkungen sind auch über den
					Importprozess abfangbar.
21	Einschränkung	Ein Attribut einer Klasse von	CLASS A =		Kompliziert zu integrieren :
		einem anderen abhängig	Attribut_1;		SQL basierte Datenbank: mit Trigger
		and or on abriangly	Attribut_2;		ESRI GDB: nur Überprüfung
L	1	1		l	Lord ODD. Har Oborpraiding

22	Genauigkeit	INTERLIS gibt die Genauig- keit der Koordinaten durch Nachkommastellen (z. B. hier 1 mm)	MANDATORY CONSTRAINT Attribut_1 <= Attribut_2; END A; COORD 480000.000 840000.000 [m], 7000.000 300000.000 [m], 200.000 5000.000 [m];	ESRI GDB: Resolution : 1mm Tolerance (ESRI Empfehlung): mindestens den doppelten Wert der Resolution: 2mm	Solche Einschränkung wären auch über Importprozesse abfangbar. • PostGreSQL: Koordinaten werden mit der vollen Auflösung (Nachkommastellen) abgespeichert. • ESRI GDB: kennen das Konzept von Tolerance und Resolution, d.h. dass Koordinaten auf ein virtuelles Gitternetz mit einer gewissen Distanz zwischen den Maschen "gesnappt" werden. Die Resolution darf nicht zu grob definiert werden.
23	Datentyp OID	Ein Attributtyp wird als UUID OID Wertebereich definiert.	CLASS A = Attribut_1 : MANDATORY INTER- LIS.UUIDOID; END A;		PostGreSQL: GUIDESRI GDB: GUIDOracle: RAW(16)

3.5 CHBase

PK = primary key FK = foreign key

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
24	chbase: Lo-	Ein Attributtyp wird als	STRUCTURE LocalisedText =	CREATE TABLE A (Da nur eine Sprache unterstützt ist, kann
	calisedText	LocalisedText definiert.	Language:	ID PK,	man in der Haupttabelle ein Attribut einfü-
			LanguageCode_ISO639_1;	Attribut_1,	gen.
			Text: MANDATORY TEXT;	Attribut_1_Language	
			END LocalisedText;)	
			CLASS A =		
			Attribut_1 :LocalisedText;		
			END A;		
25.a	chbase:Multilingua	Attribut als eigene Tabelle	STRUCTURE LocalisedText =	CREATE TABLE A_Attribut1 (Die Struktur MultilingualText ist als eine
	lText		Language:	ID PK,	Tabelle modelliert, die einen Fremdschlüssel
			LanguageCode_ISO639_1;	A_Attribut1,	enthält, um die Verbindung mit der Hauptta-
			Text: MANDATORY TEXT;	Language,	belle A zu machen.
			END LocalisedText;	Text	
				CONSTRAINT A_Attribut1_FK FOREIGN	
			STRUCTURE MultilingualText =	KEY (A_Attribut1) REFERENCES A(ID)	
			LocalisedText : BAG {1*} OF	MATCH SIMPLE ON UPDATE NO AC-	
			LocalisedText;	TION ON DELETE NO ACTION,	
			UNIQUE (LOCAL))	
			LocalisedText:Language;	CREATE TABLE A (
			END MultilingualText;	ID PK	
)	
			CLASS A =		
			Attribut 1 : LocalisationCH_V1.		
			MultilingualText;		
			END A;		

Nummer	Konstrukt	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case				
25.b	chbase:Multilingua IText	In Haupttabelle einbetten	STRUCTURE LocalisedText = Language: LanguageCode_ISO639_1; Text: MANDATORY TEXT; END LocalisedText; STRUCTURE MultilingualText = LocalisedText : BAG {1*} OF LocalisedText; UNIQUE (LOCAL) LocalisedText:Language; END MultilingualText; CLASS A = Attribut 1 : LocalisationCH_V1. MultilingualText; END A;	CREATE TABLE A (ID PK, Attribut1_DE, Attribut1_FR, Attribut1_IT)	Möglich, aber kann unangenehm sein, da die Haupttabelle viele Attribute enthält.
26	chbase: Ca- talogueReference	Ein Attributtyp wird als CatalogueReference defi- niert.	CLASS X EXTENDSCatalogues.ltem = Code: MANDATORY TEXT; Description: MANDATORY TEXT; END X; STRUCTURE Y EXTENDSCatalogues.CatalogueReference = Reference (EXTENDED): REFER-ENCE TO X; END Y; CLASS A = Attribut_1: Y;	CREATE TABLE X (ID PK, Code, Description) CREATE TABLE A (ID PK, Attribut_1 CONSTRAINTAttribut_1_FK FOREIGN KEY (Attribut_1) REFERENCES X(Code) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION,)	SQL based Datenbank: die Tabelle X enthält alle möglichen Werte des Katalogs. Dann wird die Verbindung mit der Haupttabelle mit einem Fremdschlüssel gemacht. ESRI GDB: CodedValueDomains

Nummer	Konstrukt Use Case	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
	Use Case		END A;		
27.a	chbase: Item		CLASS X EXTENDSCatalogues.Item = Code: MANDATORY TEXT; Description: MANDATORY TEXT; END X;	CREATE TABLE Item (ID PK, Class, // z.B. ,X' Code, Description	Eine Codetabelle für alle Klassen die Item erweitern. Erleichtert/Ermöglich evtl. Nutzung von bestehender Software-Library.
27.b	chbase: Item "flachwalzen"	Ein Attributtyp wird als CatalogueReference definiert.	CLASS X EXTENDSCatalogues.ltem = Code : MANDATORY TEXT; Description : MANDATORY TEXT; END X; STRUCTURE Y EXTENDS Catalogues.CatalogueReference = Reference (EXTENDED) : REFER-ENCE TO X; END Y; CLASS A = Attribut_1 : Y;	CREATE TABLE A (ID PK, Attribut_1_Code, Attribut_1_Description)	Starke Vereinfachung für Auswertungen, relativ mühsam, wenn man die Codetabelle ändern will
28	chbase: MultLine	Ein Geometrietyp wird als MultiLine definiert.	END A; Line = POLYLINE WITH (STRAIGHTS, ARCS) VERTEX Coord2; STRUCTURE LineStructure = Line: Line; END LineStructure; STRUCTURE MultiLine = Lines: BAG {1*} OF LineStructure;	CREATE TABLE X (ID PK, Geo_Obj geometry MultiLinestring,)	Hängt von der Technologie ab : PostGIS: MULTIPart unterstützt ESRI GDB: MulitPart unterstützt

Nummer	Konstrukt Use Case	Beschreibung	Beispiel	Vereinfachung (Bsp SQL)	Kommentare
			END MultiLine;		
			CLASS X =		
			Geo_Obj : MANDATORY MultiLine;		
			END X;		
29	chbase: MultiSur-	Ein Geometrietyp wird als	Surface = SURFACE WITH	CREATE TABLE X (Hängt von der Technologie ab :
	face	MultiSurface definiert.	(STRAIGHTS, ARCS) VERTEX	ID PK,	PostGIS: MultiPart unterstützt
			Coord2;	Geo_Obj geometry MultiPolygon,	ESRI GDB: MultiPart unterstützt
)	
			STRUCTURE SurfaceStructure =		
			Surface: Surface;		
			END SurfaceStructure;		
			STRUCTURE MultiSurface =		
			Surfaces: BAG {1*} OF Surfac-		
			eStructure;		
			END MultiSurface;		
			CLASS X =		
			Geo_Obj : MANDATORY		
			MultiSurface;		
			END X;		

4 Anhang

4.1 "Zahlen" und "Text" Datentypen: INTERLIS/PostGreSQL/ESRI GDB

	INTERLIS	PostGreSQL		ESRI GDB	
		Smallint	-32768 bis +32767	Short integer	-32,768 bis 32,767
	Wertebereiche: Z.B. 0 130	Integer	-2147483648 bis +2147483647	Long integer	-2,147,483,648 bis 2,147,483,647
		Bigint	-9223372036854775808 to 9223372036854775807		
Zahlen	Wertebereiche: z.B. 0.0 130.0	decimal	no limit	Single-precision floating-point number (float)	Ca3.4E38 bis 1.2E38
		numeric	no limit	Double-precision floating-point number (double)	Ca2.2E308 bis 1.8E308
		real	6 decimal digits precision		
		double precision	15 decimal digits precision		
_	Mit Längendefinition:	character varying(n), var- char(n)	variable-length with limit	Text(Länge)	
Text	TEXT*30	character(n), char(n)	fixed-length, blank padded		
		text	variable unlimited length		